Surface attachment induces Pseudomonas aeruginosa virulence.

نویسندگان

  • Albert Siryaporn
  • Sherry L Kuchma
  • George A O'Toole
  • Zemer Gitai
چکیده

Pseudomonas aeruginosa infects every type of host that has been examined by deploying multiple virulence factors. Previous studies of virulence regulation have largely focused on chemical cues, but P. aeruginosa may also respond to mechanical cues. Using a rapid imaging-based virulence assay, we demonstrate that P. aeruginosa activates virulence in response to attachment to a range of chemically distinct surfaces, suggesting that this bacterial species responds to mechanical properties of its substrates. Surface-activated virulence requires quorum sensing, but activating quorum sensing does not induce virulence without surface attachment. The activation of virulence by surfaces also requires the surface-exposed protein PilY1, which has a domain homologous to a eukaryotic mechanosensor. Specific mutation of the putative PilY1 mechanosensory domain is sufficient to induce virulence in non-surface-attached cells, suggesting that PilY1 mediates surface mechanotransduction. Triggering virulence only when cells are both at high density and attached to a surface—two host-nonspecific cues—explains how P. aeruginosa precisely regulates virulence while maintaining broad host specificity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa.

Bacteria have evolved a wide range of sensing systems to appropriately respond to environmental signals. Here we demonstrate that the opportunistic pathogen Pseudomonas aeruginosa detects contact with surfaces on short timescales using the mechanical activity of its type IV pili, a major surface adhesin. This signal transduction mechanism requires attachment of type IV pili to a solid surface, ...

متن کامل

Global Regulator MorA Affects Virulence-Associated Protease Secretion in Pseudomonas aeruginosa PAO1

Bacterial invasion plays a critical role in the establishment of Pseudomonas aeruginosa infection and is aided by two major virulence factors--surface appendages and secreted proteases. The second messenger cyclic diguanylate (c-di-GMP) is known to affect bacterial attachment to surfaces, biofilm formation and related virulence phenomena. Here we report that MorA, a global regulator with GGDEF ...

متن کامل

Mechanosensing: A Regulation Sensation

Mechanosensing of surfaces in bacteria is a process that often uses obstruction of flagellum rotation to trigger behaviors such as adhesion and surface-associated movement. In a recent publication, the PilY1 protein of Pseudomonas aeruginosa has been implicated as a novel mechanosensor that stimulates virulence in response to surface attachment.

متن کامل

Serological Classification and Comparison of Cell Surface Hydrophobicity and Biofilm and Proteases Formation between the Clinical and Environmental Isolates of Pseudomonas Aeruoginosa

Background & Aims: Pseudomonas aeruoginosa is an opportunistic pathogen and an important cause of nosocomial infections. Different factors are involved in the pathogenicity of this bacterium. This study was performed to compare some factors associated with the virulence of clinical and environmental isolates of P. aeruoginosa. Methods: The present study was performed on 25 environmental isolate...

متن کامل

Effect of site-specific mutations in different phosphotransfer domains of the chemosensory protein ChpA on Pseudomonas aeruginosa motility.

The virulence of Pseudomonas aeruginosa and other surface pathogens involves the coordinate expression of a wide range of virulence determinants, including type IV pili. These surface filaments are important for the colonization of host epithelial tissues and mediate bacterial attachment to, and translocation across, surfaces by a process known as twitching motility. This process is controlled ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 47  شماره 

صفحات  -

تاریخ انتشار 2014